GSoC 2020 Apache Proposal

Apache RocketMQ Scaler for KEDA

Application

Name : Hien Nguyen

University : Haaga-Helia University of Applied Sciences - Bachelor of Information Technology -
(Location: Helsinki, Finland)(expect graduation : August 2020)

Email : hienminhnguyen711@amail.com / Phone : +358 469 335 071

Github: https:/qgithub.com/hiejulia

Related skills : Java, Golang, SQL, NoSQL, Rest, gPRC, Microservices, Test, DevOps,
Distributed system, Cloud(AWS, Azure) , Golang, Maven, Docker, Kubernetes

GSoC - Apache RocketMQ Scaler for KEDA proposal

Context

KEDA allows for fine-grained autoscaling (including to/from zero) for event-driven Kubernetes
workloads. KEDA serves as a Kubernetes Metrics Server and allows users to define autoscaling
rules using a dedicated Kubernetes custom resource definition. KEDA has a number of “scalers”
that can both detect if a deployment should be activated or deactivated, and feed custom
metrics for a specific event source. In this topic, you need to implement the RocketMQ scalers.

Motivation
- Implement RocketMQ scalers with KEDA
Intuition

- KEDA supports scaling Event driven application, built int scalers for vendors :
Azure, AWS, Kafka, GCP, MySQL, RocketMQ,etc; multiple workloads
type(jobs,deployments,trigger)

- KEDA does not support Apache RocketMQ now. So we need to create PR in
KEDA repo for new support for RocketMQ

- KEDA has event-driven scaling which means it scales based on events instead
of RAM or CPU usage, also can be combined with other options like virtual
nodes

mailto:hienminhnguyen711@gmail.co
https://github.com/hiejulia

Solution

- Implement Scalers for RocketMQ with KEDA

Install tools/ softwares

- JDK, Maven, Git, 4g+ free disk for Broker server, terminal, Apache RocketMQ
- Helm, Kubernetes, kubectl,Docker, KEDA, Golang

Basic Configuration

- RocketMQ

- KEDA

Research:

- Helm

Build and start RocketMQ locally(with Docker container or extract
source release and build binary artifact)

Test and research DLedgerRoleChangeHandler.java,
SlaveSynchronize.java, algorithms class :
AllocateMessageQueueAveragelyByCircle,AllocateMachineRoomNearb
y, AllocateMessageQueueConsistentHash, etc, Rebalance logic
consumer, MQFaultStrategy, ConsistentHash,etc

After deployment, we could validate the deployment scales, checking
the pods and start process queue message, if message length
increase, more pods will be pro-actively added

We can also get the number of messages vs the target per pod

After the queue is empty and the specified cooldown period (a property
of the scaledobject, default of 300 seconds) the last replica will scale
back down to zero.

Benchmark the ScaledObject will be deployed when there is change in
the scaling as the number of message increases

pollingInterval: 30 # Optional. Default: 30 seconds

cooldownPeriod: 300 # Optional. Default: 300 seconds

minReplicaCount: 0 # Optional. Default: O

maxReplicaCount: 100 # Optional. Default: 100

Visualize with metrics

- Apache RocketMQ
operator(https://github.com/apache/rocketmg-operator),Docker image

- Apache RocketMQ multi-replica mechanism (research about DLedger &
OpenMessaging)

https://github.com/apache/rocketmq-operator

- KEDA architectures

How to implement

| think we have to create a PR for KEDA project for new feature request for scaler for
Apache RocketMQ.

KEDA is written in Go (gPRC). KEDA has ScaledObject for the service, Metrics
adapter, Scaler, Controller.

RocketMQ operator deployment on Kubernetes also support Horizontal scale with
Name server cluster scale, Broker Cluster Scale

RocketMQ has Client SDK for Go, Java
More in detailed (more detailed will added)

- create new RocketMQ scaler with metadata, get connection,etc

- check if there is message pending from RocketMQ queue to be processed
- get queue message

- Research all methods for event driven trigger from RocketMQ, implement
- Get metrics spec for scaling for horizontal pod autoscaler

- write test

Key modules implementation architecture design

Core component Description

Runtime RocketMQ, KEDA Runtime environment

Open Messaging Connect - OpenMessaging Connect API can be
loaded by RocketMQ connection

Main scale handler - Add NewRocketMQScaler

Authentication - Secure patterns & config for

authentication
-Pod authentication provider

Main Apache RocketMQ scaler -Main logic implementation to handle
scaler for RocketMQ

Apache RocketMQ scaler test -Test scaler logic

Main Scale Handler

- Create Custom Resources and
R e e Lo e I EL L ERe| to map event source (RocketMQ,
metadata of RocketMQ) to a deployment. Authentication config from

- Monitor event source

- return scalers.NewRocketMQScaler(resolvedEnv, triggerMetadata, authParams)

Main Apache RocketMQ scaler

Research about main logic :

KEDA monitor event source, feed that data to Kubernetes and HPA and
drive rapid scale of deployment. Each replica of deployment is actively
puling items from event source
Scale based on events while preserve rich connection & processing
semantics with event source (in order processing, retries, deadletter,
checkpointing)
Some main logic
- No message: scaleto 0
- Message arrives : detect event,activate deployment
- container connect to RocketMQ abd start pull message
- more messages : KEDA feed to HPA to drive scale out
- each replica of deployment is actively processing
messages, or each replica is processing a batch of
messages in a distributed manner
EEEE IS lis used to define how KEDA scale and triggers
Logic to handle long running executions
- Run as jobs: run event driven code in kubernetes jobs instead of
deployment
- Custom resource for the cases : no job created, KEDA
create a job, when jon starts running, it pulls a single
message and processes it to completion
- leverage the container lifecyle [Remmrom lifecycle hooks
Logic for authentication
- Config auth per ScaledObject
- Re use creds or delegate authentication with
TriggerAuthentication

- Create a new RocketMQ scaler passed metadata

- Config authentication

- Get RocketMQ connection

- Function to check if there are pending messages to be processed from RocketMQ
- Function to get message from RocketMQ

https://www.gnu.org/software/libc/manual/html_node/Termination-Signals.html

Function to get metrics spec for scaling returns the MetricSpec for the Horizontal Pod
autoscaler

Function to get metrics return value for a supported metric and an error if there is a
problem getting the metric

Close RocketMQ connection

Main Apache RocketMQ test

RocketMQ metadata, resolved env for test : properly formed metadata, malformed queue
length, missing host, missing queue name, etc

Main Apache RocketMQ test

Set up local env for test

Start RocketMQ Name Server

Start RocketMQ Broker

Send & Receive message test case(add dependencies rocketmq-client), send
async/sync/ 1way mode, consume message

Broadcast with consumer set to broadcast mode, register message listener and consume
messge concurrently

Schedule example: send scheduled message and register message listener

Batch example : send messages in batches, split into lists

Filter example: RocketMQ offer some SQL expression to filter out message
Logappender example:

Open Message example: OMS Producer & OMS Pull consumer, OMS Push Consumer
Transaction example: send transactional message and implement transaction listener
interface

Test for parallel producing & consuming in RocketMQ, research more

Shutdown server

Main Apache RocketMQ for KEDA test

Install KEDA

Deploy ScaledObjects, check HPA

Implement some RocketMQ usage examples, deploy to KEDA(virtual nodes can be test
also), generate deployment yaml, deploy container image, apply the deployment to the
cluster

Validate the scale with KEDA and benchmark, profil with event trigger, for example,
publish message to queue and then validate the deployment scales(check to see how
more pods will be pro-actively added when for example message length continues to
increase)

Clean up the resource

Deliverables & Timetable

All the decision, methods, tasks, implementation will be discussed with mentor beforehand

Date

Time Description

Now -

18 May 6 weeks - Install, config the environment(64bit OS Mac),
JDK, Maven, Git, 4g+ free disk for Broker server.

For KEDA: Helm, Kubernetes, . Docker,

- Clone source code of RocketMQ, RocketMQ
Operator, build and test it locally.

- Clone source code of KEDA, build and test it
locally

- Community:contact with 2 mentors and discuss in
depth about RocketMQ.In particular with Apache
$Project, including project mailing lists, wikis, issue
trackers, test systems.

- RocketMQ : read docs, read issues opened on
github, read code,research architecture, make some
modifications, test all examples with rocketmq
queue(order, broadcast, schedule, batch, filter,
logappender, openmessaging, transaction).
Research about rocketmq multi-replica
algorithms(based on DLedger). Download, test&run
OpenMessaging Connect API and research about it
algorithms

- KEDA: research mainly about architecture

18 May - 1 June

2 week
- Checkpoint

-Test KEDA some available examples like Kafka,
Azure SQS queue,service bus,Event hub, Kinesis
stream, RocketMQ(most closer with RocketMQ
queue),read docs & examples. Test examples how
KEDA works with RocketMQ, Azure queue, service
bus, Redis, MySQL, NATS streaming, Kafka, GCP
pub/sub

- Test RocketMQ examples : Pub/sub, Broadcast,
Schedule, Batch, Filter, Logappender,
OpenMessaging, Transaction

-Discuss with mentor & community

1 June - 15 June

2 week

Checkpoint-Kicks
tart

- Divide into subtasks, create backlog for tasks

- Draft detailed high level architecture for main
ApacheRocketMQ scaler and discuss with mentor
- Write code, refactor code, implementation

- Write test

15 June - 29 June

2 week
- Checkpoint

- Divide into subtasks, create backlog for tasks

- Draft architecture to implement test methods(unit
test, integration, E2E test) for main RocketMQ
scaler

- Refactor, checkstyle,code coverage, install Best
Practice coding tools

-Discuss with mentor

-Continue writing documentation

29 June - 13 July

2 week
- Checkpoint

- Divide into subtasks, create backlog for tasks
- Unit test, integration test, E2E test for
RocketMQ with KEDA

- Deploy KEDA

- Code review & feedback

- Discuss with mentor & community

13 July - 27 July 2 week -Research, draft architecture and
implementation for metrics

- Code review & feedback

- Continue writing documentation

- Discuss with mentor

27 July - 10 Aug 2 week - Refactor code, code coverage, benchmark, profiler
test, code review with mentor

- Dashboard for KEDA deployment implementation
https://github.com/kedacore/dashboard

- Discuss with mentor & community

10 Aug- 31Aug - Write a final documentation for review/ evaluation
- Discuss with metor & community

Resources

https://qithub.com/kedacore/sample-go-rabbitmg

https://qithub.com/kedacore/charts

https://qgithub.com/kedacore/dashboard

https://qgithub.com/apache/rocketmqg-exporter

https://qgithub.com/kedacore/keda

https://qgithub.com/kedacore/keda-olm-operator

https://qgithub.com/kedacore/keda-scaler-durable-functions

https://dev.to/anirudhgarg_99/scale-up-and-down-a-http-triggered-function-app-in-kubernetes-us
ing-keda-4m42

- View KEDA operator pod via kubectl
- View logs & telemetry of KEDA operator container

Scheduling

Schedule : Weekday: 5 hours/ day/ Weekend: 8-10 hour/day
Other commitments

Summer lectures, self studies, Work

Community engagement

Discuss, feedback with mentor & community, code review

https://github.com/kedacore/dashboard
https://github.com/kedacore/sample-go-rabbitmq
https://github.com/kedacore/charts
https://github.com/kedacore/dashboard
https://github.com/apache/rocketmq-exporter
https://github.com/kedacore/keda
https://github.com/kedacore/keda-olm-operator
https://github.com/kedacore/keda-scaler-durable-functions
https://dev.to/anirudhgarg_99/scale-up-and-down-a-http-triggered-function-app-in-kubernetes-using-keda-4m42
https://dev.to/anirudhgarg_99/scale-up-and-down-a-http-triggered-function-app-in-kubernetes-using-keda-4m42

